skip to main content


Search for: All records

Creators/Authors contains: "He, Jiacheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. Colorimetric enzyme-linked immunosorbent assay (ELISA) has been widely applied as the gold-standard method for cytokine detection for decades. However, it has become a critical challenge to further improve the detection sensitivity of ELISA, as it is limited by the catalytic activity of enzymes. Herein, we report an enhanced colorimetric ELISA for ultrasensitive detection of interleukin-6 (IL-6, as a model cytokine for demonstration) using Pd@Pt core@shell nanodendrites (Pd@Pt NDs) as peroxidase nanomimics (named “Pd@Pt ND ELISA”), pushing the sensitivity up to femtomolar level. Specifically, the Pd@Pt NDs are rationally engineered by depositing Pt atoms on Pd nanocubes (NCs) to generate rough dendrite-like Pt skins on the Pd surfaces via Volmer–Weber growth mode. They can be produced on a large scale with highly uniform size, shape, composition, and structure. They exhibit significantly enhanced peroxidase-like catalytic activity with catalytic constants (Kcat) more than 2000-fold higher than those of horseradish peroxidase (HRP, an enzyme commonly used in ELISA). Using Pd@Pt NDs as the signal labels, the Pd@Pt ND ELISA presents strong colorimetric signals for the quantitative determination of IL-6 with a wide dynamic range of 0.05–100 pg mL−1 and an ultralow detection limit of 0.044 pg mL−1 (1.7 fM). This detection limit is 21-fold lower than that of conventional HRP-based ELISA. The reproducibility and specificity of the Pd@Pt ND ELISA are excellent. More significantly, the Pd@Pt ND ELISA was validated for analyzing IL-6 in human serum samples with high accuracy and reliability through recovery tests. Our results demonstrate that the colorimetric Pd@Pt ND ELISA is a promising biosensing tool for ultrasensitive determination of cytokines and thus is expected to be applied in a variety of clinical diagnoses and fundamental biomedical studies. 
    more » « less
  3. null (Ed.)
  4. Although many advanced biosensing techniques have been proposed for cytokine profiling, there are no clinically available methods that integrate high-resolution immune cell monitoring and in situ multiplexed cytokine detection together in a biomimetic tissue microenvironment. The primary challenge arises due to the lack of suitable label-free sensing techniques and difficulty for sensor integration. In this work, we demonstrated a novel integration of a localized-surface plasmon resonance (LSPR)-based biosensor with a biomimetic microfluidic ‘adipose-tissue-on-chip’ platform for an in situ label-free, high-throughput and multiplexed cytokine secretion analysis of obese adipose tissue. Using our established adipose-tissue-on-chip platform, we were able to monitor the adipose tissue initiation, differentiation, and maturation and simulate the hallmark formation of crown-like structures (CLSs) during pro-inflammatory stimulation. With integrated antibody-conjugated LSPR barcode sensor arrays, our platform enables simultaneous multiplexed measurements of pro-inflammatory (IL-6 and TNF-α) and anti-inflammatory (IL-10 and IL-4) cytokines secreted by the adipocytes and macrophages. As a result, our adipose-tissue-on-chip platform is capable of identifying stage-specific cytokine secretion profiles from a complex milieu during obesity progression, highlighting its potential as a high-throughput preclinical readout for personalized obesity treatment strategies. 
    more » « less
  5. Abstract

    Rapid and accurate immune monitoring plays a decisive role in effectively treating immune‐related diseases especially at point‐of‐care, where an immediate decision on treatment is needed upon precise determination of the patient immune status. Derived from the emerging clinical demands, there is an urgent need for a cytokine immunoassay that offers unprecedented sensor performance with high sensitivity, throughput, and multiplexing capability, as well as short turnaround time at low system complexity, manufacturability, and scalability. In this paper, a label‐free, high throughput cytokine immunoassay based on a magnet patterned Fe3O4/Au core–shell nanoparticle (FACSNP) sensing array is developed. By exploiting the unique superparamagnetic and plasmonic properties of the core–shell nanomaterials, a facile microarray patterning technique is established that allows the fabrication of a uniform, self‐assembled microarray on a large surface area with remarkable tunability and scalability. The sensing performance of the FACSNP microarray is validated by real‐time detection of four cytokines in complex biological samples, showing high sensitivity (≈20 pg mL−1), selectivity and throughput with excellent statistical accuracy. The developed immunoassay is successfully applied for rapid determination of the functional immunophenotype of leukemia tumor‐associated macrophages, manifesting its potential clinical applications for real‐time immune monitoring, early cancer detection, and therapeutic drug stratification toward personalized medicine.

     
    more » « less